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A family of Navier—Stokes preconditioners is presented that may reduce the
stiffness due to complicated interaction between convection and diffusion in vis-
cous flows. Navier—Stokes preconditioning is developed based on a Fourier analysis
of the discretized equations and a dispersion analysis of the differential equations.
Navier—Stokes preconditioning can be extended from the Euler technique with two
methods: (a) by using block-Jacobi preconditioning for the viscous terms; (b) by
introducing analytic dependence on the cell-Reynolds number in the preconditioner.
With these techniques it is possible to produce a local Navier—Stokes preconditioner
effective for all Mach and cell-Reynolds numbers. These techniques and a combined
method are analyzed with respect to condition number and linear wave propagation
and are illustrated with some numerical resultg.1998 Academic Press

1. INTRODUCTION

As discussed in the companion paper [9] on Euler preconditioning, the techniqu
marching the unsteady Euler and Navier—Stokes equations to a steady state is widely
for the computation of compressible flows. In the Euler equations, the stiffness of
time-dependent method is mainly decided bgamdition numberwhich is the ratio of
the largest to the smallest convective wave speed. The condition number increases w
bound at low-speed and transonic flow. With the presence of viscous terms, the stiff
is decided by the complicated interaction of both propagating and damping effects. In
case, the stiffness of viscous compressible flow is indicated by a newly defmelition
number which is now the ratio of the largest to the smallest modulus of a complex we
speed; the complex wave speed contains the information about the scales of both the
propagation and damping in the form of a complex variable. Using the modulus vyie
continuous switching between pure propagation and pure damping. Therefore, analc
to the inviscid case when the condition number approaches one, the Navier—Stokes s\
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is well-conditioned and as the number increases, the system becomes stiff, resulti
convergence degradation.

As to local preconditioning for the Navier—Stokes equations, the research findings
more recent than the Euler results, and more limited in number. Venkatesefedn
[15, 3] contributed a valuable method of analysis by which the proper dependenc
the preconditioning on the Reynolds number can be determined. Geetfedy[8, 7, 6]
circumvented the use of such an analysis by composing a Navier—Stokes preconditionel
the optimal Euler preconditioner and the Jacobi block for the discretized viscous/condu
terms.

Allmaras [2], and Pierce and Giles [12] considered pure block-Jacobi preconditioning
the discretized Navier—Stokes equations, equivalent to using block-Jacobi relaxation.
type of preconditioning always provides good high-frequency damping, which is desir
for multigrid relaxation, but does not systematically reduce the condition number, nor c
it help preserve accuracy in the low-speed Euler limit.

The object of this paper is to present various forms of Navier—Stokes preconditior
based on the Fourier analysis of the discretized equations and a dispersion analy:
the differential equations. To design Navier—Stokes preconditioning, it is necessary tc
both dispersion analysis and Fourier footprint analysis for discretized spatial operators.
dispersion analysis introduces the above condition number based on complex frequ
This tool is not sufficient because the footprint-scaling technique reveals the propertie
all-frequency numerical waves, which cannot be analyzed by dispersion analysis, a
actually helps to filter out those preconditioners that produce dislocated high-freque
clusters.

The discrete Fourier analysis suggests a “Jacobi-type” Navier—Stokes preconditic
combining an optimal Euler preconditioner with the Jacobi block for the discretized \
cous/conductive terms. The dispersion analysis produces an analytical form of the prec
tioner, which can equalize, in absolute value, the complex wave speeds of the Navier—S
equations. Both preconditioners and their combined form are analyzed with respect to
dition number and linear wave propagation and are illustrated with numerical results.

2. ANALYSIS OF THE NAVIER-STOKES EQUATIONS

For the design of Navier—Stokes preconditioners the system of linearized equatiol
considered. In two dimensions these can be written as

The first two terms on the right-hand side are the spatial Euler operator; the remai
terms are viscous/conductive. In the discrete version the latter are approximated by ce
differencing. With theparabolic symmetrizing set of variablgy,

adp.
JYe
du
du = dv , (2
adT

Vyy-DT
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all convection and diffusion matrix coefficients become symmetric; if we chadsebe
the streamwise coordinate, the matrices become patrticularly sparse:

1 1
M £ 0 0 00 & 0
1M o0 JJrt 0 0 0 0
A:aﬁ 14 s B=ai0 0 y=1 (3)
0o 0 M 0 N v
0 /= 0o M 0 0 &t o
14 14
0000 0000 00
0200 0oo0io 00
C=v , D=v ,  E=v (4)
0010 000 30
000 % 0000 0L

The physical characteristics of the Navier—Stokes equations over a broad range ¢
Reynolds numbers can be understood by performing a Fourier or dispersion analys
the p.d.e’s, and by examining Fourier footprints of a discretized spatial operators. W
the p.d.e. analysis tells us only about the long waves (low frequencies) which bet
according to the real physics, the Fourier footprint analysis provides the behavior o
modes produced by numerical discretization.

Venkateswaragt al.[15] performed dispersion analysis for 1D Navier—Stokes equatio
with the assumption of the unit Prandtl number and isotropic viscosity; in this case
equations decouple and distinct roots for complex wave speeds are obtained. By this ane
there are three regimes in which the characteristics of solutions differ: (1) In the Euler lir
all modes are propagating without damping. (2) In the acoustic-dominant viscous ¢
even with very low cell-Reynolds number, two acoustic modes are propagating while
mode is damping. In this case, the order of the Mach number is much lower than the
the cell-Reynolds number. (3) When the cell-Reynolds number is low but the Mach nur
is not too low, i.e., the viscosity-dominant case, there are two modes damped due t
viscosity and heat conduction effectin momentum and energy equations whereas one
is still propagating because of the non-viscous continuity equation.

Fourier analysis with a first order upwind scheme supports the results of dispersion al
sis. In the Euler limit the Fourier footprint has three components: 2 larger half circles{siz
u £ ag) for the acoustic modes and a small half circle (size) for entropy convection.
Figures 1(a) and 1(b) show that when the acoustic Reynolds nuiRbes Re/ M) is large,
the acoustic waves are dominant regardless of the cell-Reynolds number. Figures 1(c
1(d) demonstrate that whé&tg, is small, two modes are viscous-dominanRaslecreases;
the remaining mode does not experience a strong viscous effect. WitRdguhe overall
shape of the footprints becomes flatterResdecreases, deviating significantly from the
circular shape of the Euler footprints. The extent of the footprint along the negative |
axis is inversely proportional to the cell-Reynolds number, which is the scale factor of
viscous Jacobian matrices. It is also noted that one or two components of the footp
get close to the imaginary axis while the others collapse onto the negative-real axis. T
results can be interpreted in the same manner as those of the dispersion analysis: one
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FIG. 1. Fourier footprint for the 1D N-S equations.

modes are still convection-dominated depending on the acoustic Reynolds number, \
the other modes are viscosity dominated.

In designing Navier—Stokes preconditioning, both dispersion analysis and Fourier f
print analysis for discretized spatial operators are important. The first tool requires ir
ducing a condition number based on the complex frequency, which includes both the \
speed and the damping rate; it is this condition number that must be optimized, as dor
the wave-speed condition number in Euler preconditioning. The first tool is not suffici
because the footprint-scaling technique can show the characteristics of high-frequenc
merical waves, which cannot be analyzed by dispersion analysis, and it actually helj
filter out those preconditioners that produce dislocated high-frequency clusters.

3. PRECONDITIONING DESIGN FOR NAVIER-STOKES EQUATIONS

Two ways of extending local Euler preconditioners to the Navier—Stokes equations |
been reported in the literature:
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FIG. 2. Fourier footprints for the upwind-differenced 2D Euler equations with optimal preconditioning.
(a) the entropy/shear eigenvalues coincide with acoustic eigenvalues along the circular “hole” touching the o
in (b) they have been rescaled and become visible.

(1) Adding to the Euler preconditioner the viscous/conductive entries arising in blo
Jacobi preconditioning; this technique is due to Godfrey [6, 8, 7];

(2) Introducing the cell-Reynolds number dependence in the entries of the E
preconditioner according to a Navier—Stokes dispersion analysis, a technique du
Venkateswaraet al.[15].

Jacobi Preconditioning

With regard to the first technique, the objections to Jacobi-type preconditioning for
Euler residual are not valid for the Navier—Stokes terms, because these terms by them:
are very well conditioned.The main effect of Jacobi preconditioning when used only fc
the viscous/conductive terms is rescaling the dissipative scales with respect to the col
tion scales [10]. This is achieved in practice by fixing the highest-frequency eigenva
(represented in the Fourier footprint by the left-most negative-real point), regardles
Mach or cell-Reynolds number.

However, the application of this technique to the 2D Navier—Stokes preconditioner
quires some modification of the embedded Euler preconditioning. The Euler precondit
ing, which is the basis for the Navier—Stokes preconditioning extension, is well discusse
the joint paper [9]. A Fourier footprint for the preconditioned 2D first-order upwind Eul
operator is drawn in Fig. 2(a). For the original p.d.e.-based preconditioning, the high ac
tic frequencies are located at the far left, whereas the high frequency components of ent|
and entropy are in the middle of the domain. It is desirable to put the highest frequencie
all physical modes at the same location, for instance, to facilitate high-frequency dam
by marching schemes, or residual smoothing. This relocation can be accomplished by
ing the enthalpy- and entropy-wave speeds by a faotbr- %); this is accomplished in
the Van Leer—Lee—Roe matrix [11, 10] by replacing the constraints 1 in the elements (.

1 The dissipative time-scales do not differ more than a factor(mex, 4/3).
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and (4, 4) of the preconditioning matrix by the required faetdFor this preconditioning
matrix, the Euler symmetrizing system of variabld&] = (£, du, dv, dp — a2dp)7, is

pa’
used,
#Mz —#M 00
-5=M L +e¢ 0 0
Peu=| 7 7 : ®)
0 0 T 0
0 0 0 €

whereg = /|1 — M2| andt = min(8, /M) = /1 — min(M2, M—2). The Fourier foot-
print after this modification is shown in Fig. 2(b).

The resulting form of a Jacobi Navier—Stokes preconditioner in the streamwise coordi
becomes

4, ., 2/C E q(8 + AR) AX
PNéZPE&-Fa(AXz'i‘AyZ) (X:Tamzi; (6)

Ay

hereq is the flow speed. Note that in subsonic casgecomes. This formula is valid for
first-order upwind differencing of the Euler terms; for a higher-order Euler discretizatic
like ax-scheme, a correction factor-1« to the Euler contribution is required [10],

Ps = Pas + (12 P5) (& + A£yZ> (7)
Figures 3-5 show how Jacobi preconditioning can confine the numerical eigenve
regardless of Reynolds number, cell aspect-ratio, and higher order scheme.

In the Cartesian coordinate, i.e., when the flow direction is not aligned with grid orit
tation, the expression of the Navier—Stokes preconditioner needs some transformati
viscous matrix coefficients because spatial discretization is performed with respect to
direction.

(8)

Pys=Pei+ —
g

C|cosp| + E [sing| n Clsing| + E |cos¢|
Ax2 Ay? '

Note that the above expression is defined still on the streamwise coordinate and the vi
part may be further simplified with some assumptions. The enthalpy/entropy scalesfac
in the Euler preconditioner is taken to &+ AR) due to the streamwise cell aspect-ratio
The streamwise cell aspect-ratio is definésy, (see Fig. 6) as

B ﬂ __Ising| + AR |cosg|
4= 38, = lcoso| + R sing| ©

whereg is the flow angle with respect to grid orientation. Therefore, the highest freque
eigenvalues are located on the real axis-atq with

dg = (B + ARa), (10)
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FIG. 3. Fourier footprint of Navier-Stokes spatial operator with or without preconditionMgs; 0.1,

Rey = 1.

for all Mach numbers and Reynolds numbers. However, this streamwise cell-aspect
concept can be applied to find the correct length scale in the definition of the local (
number. The length scale for a general rectangular grid is defined as
| = AS = AX|cosp| + AY|[sing|. (11)

The idea of rescaling through preconditioning can easily be extended to include sot
term rescaling, and is in essence the same as the point-implicit treatment favored for ¢
source terms. This makes Jacobi-type Navier—Stokes preconditioning suitable for p.
based turbulence modeling and Navier—Stokes equations with finite-rate chemistry, w
require the capacity to deal with stiff source terms as well as large cell-aspect ratios. |
source-term vector on the right-hand sidélisthe preconditioner for the extended syster
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of equations takes the form

Prswn =Pea+ ~( 1a + 50z — Atgg (12)

1/2C 2E oH
AXZ A2 U

Figures 11 and 12 show how the Fourier footprint for this type of system is affected
the preconditioner. In Fig. 11 (unpreconditioned) notice that some eigenvalues, due t
presence of the source terms, have moved to a point on the negative real axis outsic
main locus; this reduces the allowable time step. In Fig. 12 (preconditioned) these ve

have been scaled back.

Unlike Euler preconditioners, composite Navier—Stokes preconditioners of the above
are simplest when appearing Bs'. Analytical inversion is not attractive, so the methoc

becomes truly point-implicit.
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Analytical Preconditioning

The analytical preconditioning requires a Fourier analysis of the linearized equa
and subsequent eigenvalue computation as be shown in the previous section. In sp
symbolic computing, complete results have been obtained only for the unpreconditic
equations in one dimension, under simplifying assumptions. The effect of preconditior
can only be predicted in certain asymptotic casdsaphd/orRelarge or small); evaluating
the performance of a proposed preconditioner requires numerical calculation of eigenva

The eigenvalues coming out of a Navier—Stokes dispersion analysis are complex, wit
imaginary part representing propagation and the negative real part damping. The conc
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number still is defined as the ratio of the largest and smallest moduli of eigenvalues,
properly takes into account both physical effects. We therefore continue to pursue the
mization of the condition number. Using educated guessing and symbolic manipulatior
have developed a family of 1D Navier—Stokes preconditioners that is capable of conne
the Van Leer—Lee—Roe Euler preconditioner to each of the two distinct asymptotic visc
regimes described below. Using the symmetrizing state variables listedaagdiean write
this matrix family as

P —-MQ MOFu

pa
Pyl anaytic = | —MQ Q+1 0 , 13)
0 0 1

whereP;; and Q must have the following asymptotic values: [15]:

O(M?), Re> 1
Pi~{0(4), Re<1 i <1Q~0®. (14)
O(&). Re« 1, M 1

The three asymptotic regimes are, respectively, the inviscid or Euler limit, the acou:
dominated viscous limit, and the viscosity-dominated limit. Wikgnfollows the above
orders, the condition number can remain at the order of 1, which is independénandl
Re(see Table I).

It should be mentioned that the Reynolds number used in the dispersion analysis is al
based on the wave length of the Fourier mode considered. When using the results o

2The symmetrizing variables defined previouslydly = (dp/pa, du, dv, dw, dS) are sometimes called the
“Euler symmetrizing variables,” and actually are not the best choice for a Navier—Stokes analysis. The “para
symmetrizing variables,” witidU = (ado//y o, du, dv, dw, adT/+/y (y — DT), symmetrizeall coefficient
matrices in the Navier—Stokes equations [1].
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TABLE |
Condition Number Produced by Various 1D Navier—Stokes Preconditioners in Different
Asymptotic Regimes, Based on PDE Dispersion Analysis

Preconditioning Inviscid Viscosity-dominated Acoustic dominatec
None T EmvI e YRe
Chorin/Euler 01 ﬁ @

Van Leer/Euler 1 m é
Turkel/Euler 1 m @
Van Leer+ Jacobi 1 < m < é
Van LeerRe+ Jacobi 1 o®Q) <grg
Van LeerRe 1 oQn (]

Note For a description of regimes and preconditioners see the main text. “VarRigeeréans Van Leer—Lee—
Roe preconditioner witfiRedependent (1, 1) element. The notation *.” means “lower than ...; analytic form
hard to obtain.”

analysis for the formulation of Redependent preconditiondRe must be interpreted as
the cell-Reynolds numbére,.

InsertingQ = 0 produces the equivalent of Chorit'preconditioner, used initially by
Turkel [13] and preferably by Merklet al. [4].

One problem with this preconditioner is that, according to the PDE analysis, it cres
a small positive growth rate for one wave mode [15]. In practice this mode may be <
pressed by the artificial dissipation presentin the discretization, in particular if the marct
scheme is implicit. This, of course, does not relieve us of the duty to search for better exy
preconditioners. It is conceivable that a smarter choice of the matrix elements will eve
ally remove the growing mode, and that the analysis can be extended to multidimens
preconditioning.

For multidimensional preconditioning, it becomes much harder to maintain the condi
numberindependent & andRebecause waves propagate omnidirectionally with differe
convection speeds and damping rates and the analysis becomes complicated in com
the convection and damping. However, if we attempt to reduce the condition number in |
x andy directions, Chorin’s preconditioner might be the proper choice. This does notim
that Chorin’s is unique as a proper choice of a multidimensional preconditioner becs
maintaining the condition number in two directions might not be necessary design crite
as shown in Euler preconditioning [11, 10]; in Euler preconditioning the maximum val
among each wave speed in all directions, not all wave speeds for all directions, is cou
to reduce the condition number.

Combined Preconditioning

When combining the previous Jacobi and analytic preconditioning, some problem
each preconditioner could be eliminated. The growing mode of the analytic preconditic
can be removed by combining the result of the dispersion analysis with the addition of
viscous Jacobi block. Some condition numbers produced by Jacobi preconditioning, w
becomes large for a very low cell-Reynolds number, can be also much reduced.

3 Named after Chorin because it relates to his artificial-compressibility method [5].
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Specifically, we have modified the (1, 1) elementin the Van Leer—Lee—Roe preconditic
(cf. Eq. (5)) according to the branched expression of Eq. (14), and then added the vis
Jacobi block, as in Eq. (6). The 2D form adopted is

_ _ 2 C E
PyiR/Resaconi= Pyirme + o (sz + Ayz)’ (15)
Re

with

<

|-
+N
n=Z
4 o o
- O o O

o

PvLr/Re = , (16)

where

M2, Re> 1

M2 M2
0 =19 gre Re« 1 5z x1 (17)
1

i Re<1 ™51
The parametetige, Which reflects the ratio of convection to the diffusion effect, must t
redefined because of the change of the eigenvalue systemiRéthedified Euler precon-
ditioner. The exact symbolic form of the eigenvalues of this modified Euler preconditio
is too complicated to obtain, but the acoustic eigenvalues approximately ba¢2smand
M. Thereforeage is redefined asf—f instead of¥< (14 %).

Unlike Jacobi preconditioning, the inversion in matrix formulation appears to rely
numerical calculation due to parameter variation depending on flow regimes, causin
method to be expensive. Note that the Jacobi preconditioning could use the analy
inversion method, i.e., an explicit form of the Navier—Stokes preconditioner can be utili
in numerical implementation.

The increase of the (1, 1) element in the Euler part of preconditioning has the additi
benefit that it prevents the degeneration of the eigenvector system foridmilibwever,
the attempt to modify the viscous Jacobian matrices in the Van Leer/Jacobi formulation
tried in order to avoid the null space in these matrices due to the absence of diffusion i
continuity equation, but it was not of much help because the corresponding element i
inverse Euler preconditioning is much stronger kb 0.

4. ANALYSIS OF VARIOUS PRECONDITIONING

Condition Number

Table | shows the condition number achieved by a variety of Navier—Stokes preco
tioners in the three asymptotic regimes distinguished in Eq. (14). Only their 1D versi
are considered, as a multidimensional analysis so far has not appeared possible.

For the original Navier—Stokes equations, the stiffness in the Euler limit is indepenc
of Reand increases as the Mach number decreases; for viscosity-dominated flow, o
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other hand, it is independent bf, increasing wheiRedecreases. For acoustic-dominate
viscous flow the stiffness varies with bdthandRe The use of preconditioning completely
changes this pattern. The aim is to make the condition number equal t@@grthis has
been achieved using Egs. (13), (14) (but remember the growing mode), and there is
that the Jacobi-type preconditioners can be improved up to this mark.

The listings in Table | are illustrated in detail by the four carpet plots, Figs. 13-18, ba
on numerically obtained eigenvalues. Figure 13 shows the condition number for the ur
conditioned 1D Navier-Stokes equations as a function of Mach numbet €101 < 10°1)
and cell-Reynolds number (1D< Re< 10°). The number is seen to increase beyond bour
for vanishingM or Re Figure 14 shows that the Van Leer—Lee—Roe—Euler preconditiol
creates a large usable domale> 1, larger than the Euler domain. The same is tru
for Turkel's preconditioner, see Fig. 15. This explains results recently reported by Tul
et al.[14], viz. that the Euler preconditioner was effective in 2D and 3D viscous flow col
putations. The cell-Reynolds number in these calculations nowhere dropped below 1
even in the most stretched boundary-layer cells.

Figures 16 and 18 show the improvements brought about by adding the Jacobi
to the Euler andRedependent forms of the Van Leer-Lee—Roe matrix. Finally, Figure
shows the condition number for just tRe-dependent Van Leer matrix: it (1) over the
entire(M, Re domain.

Linear Wave Propagation

Linear wave propagation analysis for an arbitrary system of viscous equations ca
performed to analyze visually the convection and damping effect. Because the exact
of the time-dependent solution of viscous Burger’s equation with cosine initial functior
known, the transient solutions for a system may be obtained with proper linear superpos

40 T T T T T

35 T

30 1

25 . ]

20 1

15 1

wave amplitude

10 1

5F 4

0

-5} i

_1 0 1 1 1 i 1 1 1
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

FIG. 7. Approximation of the Dirac Delta function by superposition of cosine functions up to 40 order.
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of each frequency and sorting between each set of waves; this needs numerical calcul
The Delta function, purely composed with cosine functions, is used as an initial funct
its wave forms will be easily obtained later at a certain time; 40 order of cosine functi
is used for realization of the Delta function (see Fig. 7).

Figures 8-10 show how each preconditioner propagates the initial delta function, apy
imated by 40 cosines, with its own convection speed and damping rate. In all computati
the Mach number equals From Fig. 8, the unpreconditioned case, we see the famil
feature of the inviscid limit that one of the waves moves slowly compared to the oth
leading to a high condition number (11 fist = 0.1). For very low cell-Reynolds numbers,
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FIG. 8. Evolution of Delta functions: solution &t= 1 in the unpreconditioned case, for varides,; M =0.1.
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FIG. 9. Evolution of Delta functions: solution at=1 with Van Leer/Jacobi preconditioner.

one wave is undamped and moving slowly, but not very slowly, while the other waves t

been fully damped out, leading to a huge condition number.

As can be seen from Fig. 9, the Van Leer/Jacobi Navier—Stokes preconditioner dc
good job in reducing the condition number in the Euler limit (all propagation speeds ec
in absolute value), but it suffers from a large condition number at very low cell-Reyno
numbers, due to an undamped stationary wave (the other stationary waves show signi
damping). Figure 10 shows the improvement at very low cell-Reynolds numbersRafter
dependence is put into the Euler part of the preconditioning. The undamped stationary

starts to move, reducing the condition number, while the growing mode is absent.
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FIG. 10. Evolution of Delta functions: solution at= 1 with Redependent Van Leer/Jacobi preconditioner.

5. NUMERICAL STUDIES

Below we give examples of the action of Navier—Stokes preconditioners.

First, consider initial values consisting of a uniform field with a pressure perturbat
in one central cell. The Mach number of the background flow is low (0.1, 0.01); the fl
angle is 0. Table Il shows the number of iterations needed for 5 orders of magnitude
residual reduction; the scheme is first-order upwind Euler with centrally differenced visc
terms, and single-stage time-stepping. The grid consists gf l@square cells. It is seen
that the convergence by the preconditioned schemes is hardly influenced by the Ma
cell-Reynolds number, in contrast to the non-preconditioned scheme.
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TABLE Il
Number of Iterations Required for Reduction of the Density Residual by a Factor 16° (Unless
a Smaller Exponent Is Indicated in Parentheses), in Calculating the Decay of a M? % Pressure
Perturbation in the Center of a Square Domain (10x 10 Cells, AR = 1)

M
0.1 0.01

Re, Unpc VL/J CRe Unpc VL/J CRe
10° 679 86 91 5183 86 91
10t 679 86 92 5182 86 91
10 675 87 117 5100 87 116

1 1351 166 1830 5130 166 1858
1072 50000¢4.74) 194 133 5874 195 120
104 50000(2.79) 214 172 50000(2.28) 214 121
10°° 50000(2.21) 214 170 500006¢2.21) 214 145

Note Discrete Navier—Stokes operator (first-order upwind/central differencing) with single-stage time me
ing. Unpc=unpreconditioned; VL/3 Van Leer+ Jacobi; CRe= Chorin preconditioner modified to includ®e
dependence.

The Van Leer/Jacobi and ChorRRé preconditioners perform comparably, with some
interesting differences. In the Euler limit the Van Leer matrix yields a lower conditic
number than the Chorin matrix (1 versus 2.6), explaining the somewhat faster converg
using the former. In the loviRelimit the situation is reversed, as the condition number fc
Van Leer/Jacobi is now a factor 5 larger than for Chdfie For medium Reynolds number,
Re~ 1, the ChorinRematrix unexpectedlglows dowrconvergence; this probably is the
result of an inadequate choice of the switching function that connects the three branch
Eq. (14). Itis clear that improvement is still possible here.

3.0
L o
1.0
Im
- °
—-1.04
-3.0 T T T T T
—6.0 —4.0 -2.0 0.0

Re

FIG. 11. Fourier footprint for unpreconditioned Navier—Stokes scheme (first-order upwind/central) with t
bulence modelingM = 0.1, R, = 10%, Ul =5« 1¢%, AR =10.
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FIG. 12. Same asin Fig. 11, but after Van Leer/Jacobi preconditioning.

The second example is the computation of the development of a boundary laye
a flat plate M., =0.1, Re. =4 x 10%). The cells right on the wall have an aspect rati

~1700. In this example, a Jacobi-type Navier—Stokes preconditioner is used. The anal;
preconditioner is not valid for this model because this model contains a medium Reyn
number region which causes slow down convergence as can be seen from the first exa

Figure 19 shows the steady flow field. As seen from the convergence histories in Fig

convergence without preconditioning is slow to begin with and keeps slowing down, w

the preconditioned scheme has no convergence problem at all.
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FIG. 13. Condition number for 1D Navier—Stokes equations without preconditioning.
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FIG. 14. Same as Fig. 13, using Van Leer’s Euler preconditioner.
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FIG. 15. Same as Fig. 13, using with Turkel’s Euler preconditioner.
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FIG. 16. Same as Fig. 13, using Van Leer/Jacobi preconditioning.
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FIG. 17. Same as Fig. 13, using Van Leer’s preconditioner modified to incReldependence, plus the
viscous Jacobi block.
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FIG. 18. Same as Fig. 13, using Van Leer’s preconditioner modified to indResgependence.

FIG. 19. \Velocity field for boundary-layer development on a flat pldte=0.1, Rg. =4 x 10%, 25x 20 grid.
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FIG.20. Convergence histories for the flat-plate boundary-layer calculatiérs0.1,Re =4 x 10%, 25x 20
grid. UPC= unpreconditioned, PE€ Van Leer/Jacobi preconditioner.
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FIG. 21. Convergence histories for the flat-plate boundary-layer calculations with turbulence model
M =0.1, Reg =3 x 1°, 25x 50 grid. UnPC= unpreconditioned; T P& Van Leer/Jacobi preconditioner in-
cluding turbulent source-term Jacobian.

However, it has been known that even the Euler preconditioner may accelerate the
cous flow computation to some extent when the lowest local Reynolds number is nof
low. Turkel's preconditioner already succeeded in computating the viscous flow with
Reynolds number up to around 1. But in this model, this is not the case: the cell-Reyn
number becomes much lower than 1 at some local cells in deep boundary layers. This n
the Euler preconditioner cannot be used for acceleration of this viscous flow computa
A numerical test also shows that the Euler preconditioner produces a critical stability p
lem at a very low cell-Reynolds number, failing to compute this model problem. In t
model, the large portion of convergence acceleration is believed to rely on the Euler pre
ditioning effect rather than the treatment of preconditioner for viscous effect because
computational domain with the Reynolds number higher than 1 is quite large. Howeve
is not possible to quantitively measure the effect of each Euler and viscous preconditio
due to the above-mentioned stability cause.

The third numerical test is the computation of the developmenttaftaulentbound-
ary layer on the flat plateM,, = 0.1, Rg =3 x 10°). The Spalart—Allmaras one-equation
model is used for the turbulent transport. The convergence histories in Fig. 21 show
the Van Leer/Jacobi preconditioner of Eq. (12) indeed achieves convergence, overco
the double stiffness due to the huge cell-aspect rafid+ 10°) and the large source term.
Without preconditioning convergence is slow and eventually stalls.

6. CONCLUSIONS

The Navier—Stokes preconditioning is developed based on a Fourier analysis of the
cretized equations and, following Venkateswaran and Merkle, a dispersion analysis o
differential equations. The principle of the Navier—Stokes preconditioning is to remove
dependence of the physical time scales on both the Mach number and the cell-Rey
number. The discrete Fourier analysis suggests a “Jacobi-type” Navier—Stokes prec
tioner, combining an optimal Euler preconditioner with the Jacobi block for the discreti:
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viscous/conductive terms. The dispersion analysis produces an analytical form of the
conditioner, which can equalize, in absolute value, the complex wave speeds of the Na
Stokes equations; these include both effects of viscous damping and wave propagatic

The Jacobi-type Navier—Stokes preconditioner suffers from a large condition nur
due to one stationary non-damped wave at very low cell-Reynolds numbers. In cont
the analyticalRedependent Navier—Stokes preconditioner does not produce too larg
condition number over the whole Reynolds-number range, but it suffers from a less-tl
adequate switching function connecting the three asymptotic flow cases. In addition
very low cell-Reynolds numberRe« M?) the preconditioned equations obtain a growin
mode, which must be stabilized, e.g., by implicit time-marching. If one insists on expéicit
dependence, the combination with the viscous Jacobi block may overcome both obstac
low cell-Reynolds numbers and large cell-aspect ratios. The modification of the embec
Euler preconditioner is restricted to puttiRg-dependence into the (1, 1) element, which i:
easy to implement. This modification also helps to produce a less degenerated eigeny
structure at low Mach numbers, comparable to limiting the Mach number from below.

It should be explained that the very ld®&enumbers where preconditioning may fail are
mostly of academic interest. Our analysis shows that dowRetax 1 there is no need to
deviate from a Euler preconditioner; this observation is supported by numerical evide
presented by other authors.

Numerical point-disturbance tests indicate that both types of preconditioners, Jac
type and analytical, can increase the convergence efficiency. However, when comp
the development of a boundary-layer on a flat plate, the Jacobi-type preconditioner ¢
better convergence; this may be due to the automatic inclusion of the cell-aspect-rat
the viscous Jacobi block.
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