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A family of Navier–Stokes preconditioners is presented that may reduce the
stiffness due to complicated interaction between convection and diffusion in vis-
cous flows. Navier–Stokes preconditioning is developed based on a Fourier analysis
of the discretized equations and a dispersion analysis of the differential equations.
Navier–Stokes preconditioning can be extended from the Euler technique with two
methods: (a) by using block-Jacobi preconditioning for the viscous terms; (b) by
introducing analytic dependence on the cell-Reynolds number in the preconditioner.
With these techniques it is possible to produce a local Navier–Stokes preconditioner
effective for all Mach and cell-Reynolds numbers. These techniques and a combined
method are analyzed with respect to condition number and linear wave propagation
and are illustrated with some numerical results.c© 1998 Academic Press

1. INTRODUCTION

As discussed in the companion paper [9] on Euler preconditioning, the technique of
marching the unsteady Euler and Navier–Stokes equations to a steady state is widely used
for the computation of compressible flows. In the Euler equations, the stiffness of the
time-dependent method is mainly decided by acondition number, which is the ratio of
the largest to the smallest convective wave speed. The condition number increases without
bound at low-speed and transonic flow. With the presence of viscous terms, the stiffness
is decided by the complicated interaction of both propagating and damping effects. In this
case, the stiffness of viscous compressible flow is indicated by a newly definedcondition
number, which is now the ratio of the largest to the smallest modulus of a complex wave
speed; the complex wave speed contains the information about the scales of both the wave
propagation and damping in the form of a complex variable. Using the modulus yields
continuous switching between pure propagation and pure damping. Therefore, analogous
to the inviscid case when the condition number approaches one, the Navier–Stokes system
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is well-conditioned and as the number increases, the system becomes stiff, resulting in
convergence degradation.

As to local preconditioning for the Navier–Stokes equations, the research findings are
more recent than the Euler results, and more limited in number. Venkateswaranet al.
[15, 3] contributed a valuable method of analysis by which the proper dependence of
the preconditioning on the Reynolds number can be determined. Godfreyet al. [8, 7, 6]
circumvented the use of such an analysis by composing a Navier–Stokes preconditioner from
the optimal Euler preconditioner and the Jacobi block for the discretized viscous/conductive
terms.

Allmaras [2], and Pierce and Giles [12] considered pure block-Jacobi preconditioning for
the discretized Navier–Stokes equations, equivalent to using block-Jacobi relaxation. This
type of preconditioning always provides good high-frequency damping, which is desirable
for multigrid relaxation, but does not systematically reduce the condition number, nor does
it help preserve accuracy in the low-speed Euler limit.

The object of this paper is to present various forms of Navier–Stokes preconditioners,
based on the Fourier analysis of the discretized equations and a dispersion analysis of
the differential equations. To design Navier–Stokes preconditioning, it is necessary to use
both dispersion analysis and Fourier footprint analysis for discretized spatial operators. The
dispersion analysis introduces the above condition number based on complex frequency.
This tool is not sufficient because the footprint-scaling technique reveals the properties of
all-frequency numerical waves, which cannot be analyzed by dispersion analysis, and it
actually helps to filter out those preconditioners that produce dislocated high-frequency
clusters.

The discrete Fourier analysis suggests a “Jacobi-type” Navier–Stokes preconditioner,
combining an optimal Euler preconditioner with the Jacobi block for the discretized vis-
cous/conductive terms. The dispersion analysis produces an analytical form of the precondi-
tioner, which can equalize, in absolute value, the complex wave speeds of the Navier–Stokes
equations. Both preconditioners and their combined form are analyzed with respect to con-
dition number and linear wave propagation and are illustrated with numerical results.

2. ANALYSIS OF THE NAVIER–STOKES EQUATIONS

For the design of Navier–Stokes preconditioners the system of linearized equations is
considered. In two dimensions these can be written as

Ut = AUx + BUy + CUxx + DUxy + EUyy. (1)

The first two terms on the right-hand side are the spatial Euler operator; the remaining
terms are viscous/conductive. In the discrete version the latter are approximated by central
differencing. With theparabolic symmetrizing set of variables[1],

dU =


adρ√
γ ρ

du
dv
adT√

γ (γ−1)T

 , (2)
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all convection and diffusion matrix coefficients become symmetric; if we choosex to be
the streamwise coordinate, the matrices become particularly sparse:

A = a



M 1√
γ

0 0

1√
γ

M 0
√

γ−1
γ

0 0 M 0

0
√

γ−1
γ

0 M

 , B = a



0 0 1√
γ

0

0 0 0 0

1√
γ

0 0
√

γ−1
γ

0 0
√

γ−1
γ

0


. (3)

C = ν


0 0 0 0

0 4
3 0 0

0 0 1 0

0 0 0 γ

Pr

 , D = ν


0 0 0 0

0 0 1
3 0

0 1
3 0 0

0 0 0 0

 , E = ν


0 0 0 0

0 1 0 0

0 0 4
3 0

0 0 0 γ

Pr

 . (4)

The physical characteristics of the Navier–Stokes equations over a broad range of the
Reynolds numbers can be understood by performing a Fourier or dispersion analysis of
the p.d.e.’s, and by examining Fourier footprints of a discretized spatial operators. While
the p.d.e. analysis tells us only about the long waves (low frequencies) which behave
according to the real physics, the Fourier footprint analysis provides the behavior of all
modes produced by numerical discretization.

Venkateswaranet al.[15] performed dispersion analysis for 1D Navier–Stokes equations
with the assumption of the unit Prandtl number and isotropic viscosity; in this case the
equations decouple and distinct roots for complex wave speeds are obtained. By this analysis,
there are three regimes in which the characteristics of solutions differ: (1) In the Euler limit,
all modes are propagating without damping. (2) In the acoustic-dominant viscous case,
even with very low cell-Reynolds number, two acoustic modes are propagating while one
mode is damping. In this case, the order of the Mach number is much lower than that of
the cell-Reynolds number. (3) When the cell-Reynolds number is low but the Mach number
is not too low, i.e., the viscosity-dominant case, there are two modes damped due to the
viscosity and heat conduction effect in momentum and energy equations whereas one mode
is still propagating because of the non-viscous continuity equation.

Fourier analysis with a first order upwind scheme supports the results of dispersion analy-
sis. In the Euler limit the Fourier footprint has three components: 2 larger half circles (size∼
u ± as) for the acoustic modes and a small half circle (size∼ u) for entropy convection.
Figures 1(a) and 1(b) show that when the acoustic Reynolds number(Rea = Re/M) is large,
the acoustic waves are dominant regardless of the cell-Reynolds number. Figures 1(c) and
1(d) demonstrate that whenRea is small, two modes are viscous-dominant asRedecreases;
the remaining mode does not experience a strong viscous effect. With lowRea, the overall
shape of the footprints becomes flatter asRedecreases, deviating significantly from the
circular shape of the Euler footprints. The extent of the footprint along the negative real
axis is inversely proportional to the cell-Reynolds number, which is the scale factor of the
viscous Jacobian matrices. It is also noted that one or two components of the footprints
get close to the imaginary axis while the others collapse onto the negative-real axis. These
results can be interpreted in the same manner as those of the dispersion analysis: one or two
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FIG. 1. Fourier footprint for the 1D N-S equations.

modes are still convection-dominated depending on the acoustic Reynolds number, while
the other modes are viscosity dominated.

In designing Navier–Stokes preconditioning, both dispersion analysis and Fourier foot-
print analysis for discretized spatial operators are important. The first tool requires intro-
ducing a condition number based on the complex frequency, which includes both the wave
speed and the damping rate; it is this condition number that must be optimized, as done for
the wave-speed condition number in Euler preconditioning. The first tool is not sufficient
because the footprint-scaling technique can show the characteristics of high-frequency nu-
merical waves, which cannot be analyzed by dispersion analysis, and it actually helps to
filter out those preconditioners that produce dislocated high-frequency clusters.

3. PRECONDITIONING DESIGN FOR NAVIER–STOKES EQUATIONS

Two ways of extending local Euler preconditioners to the Navier–Stokes equations have
been reported in the literature:
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FIG. 2. Fourier footprints for the upwind-differenced 2D Euler equations with optimal preconditioning. In
(a) the entropy/shear eigenvalues coincide with acoustic eigenvalues along the circular “hole” touching the origin;
in (b) they have been rescaled and become visible.

(1) Adding to the Euler preconditioner the viscous/conductive entries arising in block-
Jacobi preconditioning; this technique is due to Godfrey [6, 8, 7];

(2) Introducing the cell-Reynolds number dependence in the entries of the Euler
preconditioner according to a Navier–Stokes dispersion analysis, a technique due to
Venkateswaranet al. [15].

Jacobi Preconditioning

With regard to the first technique, the objections to Jacobi-type preconditioning for the
Euler residual are not valid for the Navier–Stokes terms, because these terms by themselves
are very well conditioned.1 The main effect of Jacobi preconditioning when used only for
the viscous/conductive terms is rescaling the dissipative scales with respect to the convec-
tion scales [10]. This is achieved in practice by fixing the highest-frequency eigenvalues
(represented in the Fourier footprint by the left-most negative-real point), regardless of
Mach or cell-Reynolds number.

However, the application of this technique to the 2D Navier–Stokes preconditioner re-
quires some modification of the embedded Euler preconditioning. The Euler precondition-
ing, which is the basis for the Navier–Stokes preconditioning extension, is well discussed in
the joint paper [9]. A Fourier footprint for the preconditioned 2D first-order upwind Euler
operator is drawn in Fig. 2(a). For the original p.d.e.-based preconditioning, the high acous-
tic frequencies are located at the far left, whereas the high frequency components of enthalpy
and entropy are in the middle of the domain. It is desirable to put the highest frequencies for
all physical modes at the same location, for instance, to facilitate high-frequency damping
by marching schemes, or residual smoothing. This relocation can be accomplished by scal-
ing the enthalpy- and entropy-wave speeds by a factorτ(1 + AR

β
); this is accomplished in

the Van Leer–Lee–Roe matrix [11, 10] by replacing the constraints 1 in the elements (2, 2)

1 The dissipative time-scales do not differ more than a factor max(γ /Pr, 4/3).



              

NAVIER–STOKES PRECONDITIONER DESIGN 465

and (4, 4) of the preconditioning matrix by the required factorε. For this preconditioning
matrix, the Euler symmetrizing system of variables,dU = (

dp
ρa , du, dv, dp − a2dρ)T , is

used,

PEu =


τ
β2 M2 − τ

β2 M 0 0

− τ
β2 M τ

β2 + ε 0 0

0 0 τ 0

0 0 0 ε

 , (5)

whereβ =
√

|1 − M2| andτ = min(β, β/M) =
√

1 − min(M2, M−2). The Fourier foot-
print after this modification is shown in Fig. 2(b).

The resulting form of a Jacobi Navier–Stokes preconditioner in the streamwise coordinate
becomes

P−1
NS = P−1

Eu + 2

α

(
C

1x2
+ E

1y2

)
, α = q(β +AR)

1x
,AR = 1x

1y
; (6)

hereq is the flow speed. Note that in subsonic caseτ becomesβ. This formula is valid for
first-order upwind differencing of the Euler terms; for a higher-order Euler discretizations
like aκ-scheme, a correction factor 1− κ to the Euler contribution is required [10],

P−1
NS = P−1

Eu + 2

α(1 − κ)

(
C

1x2
+ E

1y2

)
. (7)

Figures 3–5 show how Jacobi preconditioning can confine the numerical eigenvalues
regardless of Reynolds number, cell aspect-ratio, and higher order scheme.

In the Cartesian coordinate, i.e., when the flow direction is not aligned with grid orien-
tation, the expression of the Navier–Stokes preconditioner needs some transformation of
viscous matrix coefficients because spatial discretization is performed with respect to grid
direction.

P−1
NS = P−1

Eu + 2

αq

(
C |cosφ| + E |sinφ|

1x2
+ C |sinφ| + E |cosφ|

1y2

)
. (8)

Note that the above expression is defined still on the streamwise coordinate and the viscous
part may be further simplified with some assumptions. The enthalpy/entropy scale factorε

in the Euler preconditioner is taken to be(β +ARq) due to the streamwise cell aspect-ratio.
The streamwise cell aspect-ratio is definedARq (see Fig. 6) as

ARq = 1Sx

1Sy
= |sinφ| +AR |cosφ|

|cosφ| +AR |sinφ| , (9)

whereφ is the flow angle with respect to grid orientation. Therefore, the highest frequency
eigenvalues are located on the real axis at−2αq with

αq = q

1x
(β +ARq), (10)
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FIG. 3. Fourier footprint of Navier–Stokes spatial operator with or without preconditioning;M = 0.1,

Re1x = 102.

for all Mach numbers and Reynolds numbers. However, this streamwise cell-aspect ratio
concept can be applied to find the correct length scale in the definition of the local CFL
number. The length scale for a general rectangular grid is defined as

l = 1Sx = 1X |cosφ| + 1Y |sinφ|. (11)

The idea of rescaling through preconditioning can easily be extended to include source-
term rescaling, and is in essence the same as the point-implicit treatment favored for a stiff
source terms. This makes Jacobi-type Navier–Stokes preconditioning suitable for p.d.e.-
based turbulence modeling and Navier–Stokes equations with finite-rate chemistry, which
require the capacity to deal with stiff source terms as well as large cell-aspect ratios. If the
source-term vector on the right-hand side isH, the preconditioner for the extended system
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FIG. 4. Fourier footprint of Navier–Stokes spatial operator with or without preconditioning;M = 0.1,

Re1x = 1.

of equations takes the form

P−1
NS,turb = P−1

Eu + 1

α

(
2C
1x2

+ 2E
1y2

− 1t
∂H
∂U

)
. (12)

Figures 11 and 12 show how the Fourier footprint for this type of system is affected by
the preconditioner. In Fig. 11 (unpreconditioned) notice that some eigenvalues, due to the
presence of the source terms, have moved to a point on the negative real axis outside the
main locus; this reduces the allowable time step. In Fig. 12 (preconditioned) these values
have been scaled back.

Unlike Euler preconditioners, composite Navier–Stokes preconditioners of the above type
are simplest when appearing asP−1. Analytical inversion is not attractive, so the method
becomes truly point-implicit.
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FIG. 5. Fourier footprint of preconditioned Navier–Stokes spatial operator including higher-order upwind
Euler operator.

Analytical Preconditioning

The analytical preconditioning requires a Fourier analysis of the linearized equation
and subsequent eigenvalue computation as be shown in the previous section. In spite of
symbolic computing, complete results have been obtained only for the unpreconditioned
equations in one dimension, under simplifying assumptions. The effect of preconditioning
can only be predicted in certain asymptotic cases (M and/orRelarge or small); evaluating
the performance of a proposed preconditioner requires numerical calculation of eigenvalues.

The eigenvalues coming out of a Navier–Stokes dispersion analysis are complex, with the
imaginary part representing propagation and the negative real part damping. The condition
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FIG. 6. Streamwise cell-aspect ratio (ARq).ARq = 1Sx
1Sy

, andAR = 1X
1Y

. 1Sx = 1X |cosφ|+1Y |sinφ| and
1Sy = 1X |sinφ| + 1Y |cosφ|.

number still is defined as the ratio of the largest and smallest moduli of eigenvalues, and
properly takes into account both physical effects. We therefore continue to pursue the opti-
mization of the condition number. Using educated guessing and symbolic manipulation we
have developed a family of 1D Navier–Stokes preconditioners that is capable of connecting
the Van Leer–Lee–Roe Euler preconditioner to each of the two distinct asymptotic viscous
regimes described below. Using the symmetrizing state variables listed earlier2 we can write
this matrix family as

PVL ,Analytic =


P11 −M Q M2Q−P11

ρa

−M Q Q + 1 0

0 0 1

 , (13)

whereP11 andQ must have the following asymptotic values: [15]:

P11 ∼


O(M2), ReÀ 1

O
(

M2

Re2

)
, Re¿ 1, M2

Re ¿ 1, Q ∼ O(1).

O
(

1
Re

)
, Re¿ 1, M2

Re À 1

(14)

The three asymptotic regimes are, respectively, the inviscid or Euler limit, the acoustic-
dominated viscous limit, and the viscosity-dominated limit. WhenP11 follows the above
orders, the condition number can remain at the order of 1, which is independent ofM and
Re(see Table I).

It should be mentioned that the Reynolds number used in the dispersion analysis is always
based on the wave length of the Fourier mode considered. When using the results of this

2 The symmetrizing variables defined previously bydU = (dp/ρa, du, dv, dw, dS) are sometimes called the
“Euler symmetrizing variables,” and actually are not the best choice for a Navier–Stokes analysis. The “parabolic
symmetrizing variables,” withdU = (adρ/

√
γ ρ, du, dv, dw, adT/

√
γ (γ − 1)T), symmetrizeall coefficient

matrices in the Navier–Stokes equations [1].
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TABLE I

Condition Number Produced by Various 1D Navier–Stokes Preconditioners in Different

Asymptotic Regimes, Based on PDE Dispersion Analysis

Preconditioning Inviscid Viscosity-dominated Acoustic dominated

None M+1
min(M,|1−M |)

γ

Re
M+1

M
Re

Chorin/Euler O(1) 1

Re2
1

Re2

Van Leer/Euler 1 1

M2Re2
1

Re2

Turkel/Euler 1 1

M2Re2
1

Re2

Van Leer+ Jacobi 1 < 1

M2Re2 < 1

Re2

Van Leer/Re+ Jacobi 1 O(1) ¿ 1

Re2

Van Leer/Re 1 O(1) O(1)

Note. For a description of regimes and preconditioners see the main text. “Van Leer/Re” means Van Leer–Lee–
Roe preconditioner withRe-dependent (1, 1) element. The notation “< ...” means “lower than ...; analytic form
hard to obtain.”

analysis for the formulation of aRe-dependent preconditioner,Remust be interpreted as
the cell-Reynolds numberReh.

InsertingQ = 0 produces the equivalent of Chorin’s3 preconditioner, used initially by
Turkel [13] and preferably by Merkleet al. [4].

One problem with this preconditioner is that, according to the PDE analysis, it creates
a small positive growth rate for one wave mode [15]. In practice this mode may be sup-
pressed by the artificial dissipation present in the discretization, in particular if the marching
scheme is implicit. This, of course, does not relieve us of the duty to search for better explicit
preconditioners. It is conceivable that a smarter choice of the matrix elements will eventu-
ally remove the growing mode, and that the analysis can be extended to multidimensional
preconditioning.

For multidimensional preconditioning, it becomes much harder to maintain the condition
number independent ofM andRebecause waves propagate omnidirectionally with different
convection speeds and damping rates and the analysis becomes complicated in combining
the convection and damping. However, if we attempt to reduce the condition number in both
x andy directions, Chorin’s preconditioner might be the proper choice. This does not imply
that Chorin’s is unique as a proper choice of a multidimensional preconditioner because
maintaining the condition number in two directions might not be necessary design criterion
as shown in Euler preconditioning [11, 10]; in Euler preconditioning the maximum value
among each wave speed in all directions, not all wave speeds for all directions, is counted
to reduce the condition number.

Combined Preconditioning

When combining the previous Jacobi and analytic preconditioning, some problems of
each preconditioner could be eliminated. The growing mode of the analytic preconditioner
can be removed by combining the result of the dispersion analysis with the addition of the
viscous Jacobi block. Some condition numbers produced by Jacobi preconditioning, which
becomes large for a very low cell-Reynolds number, can be also much reduced.

3 Named after Chorin because it relates to his artificial-compressibility method [5].
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Specifically, we have modified the (1, 1) element in the Van Leer–Lee–Roe preconditioner
(cf. Eq. (5)) according to the branched expression of Eq. (14), and then added the viscous
Jacobi block, as in Eq. (6). The 2D form adopted is

P−1
VLR/Re/Jacobi= P−1

VLR/Re+ 2

αRe

(
C

1x2
+ E

1y2

)
, (15)

with

PVLR/Re =


τ
β2 σ − τ

β2 M 0 0

− τ
β2 M τ

β2 + 1 0 0

0 0 τ 0

0 0 0 1

 , (16)

where

σ =


M2, ReÀ 1
M2

Re2 , Re¿ 1, M2

Re ¿ 1
1
Re, Re¿ 1, M2

Re À 1.

(17)

The parameterαRe, which reflects the ratio of convection to the diffusion effect, must be
redefined because of the change of the eigenvalue system of theRe-modified Euler precon-
ditioner. The exact symbolic form of the eigenvalues of this modified Euler preconditioner
is too complicated to obtain, but the acoustic eigenvalues approximately become

√
2σ and

M . Therefore,αRe is redefined as
√

2σ
1x instead ofMτ

1x (1+ AR
β

).
Unlike Jacobi preconditioning, the inversion in matrix formulation appears to rely on

numerical calculation due to parameter variation depending on flow regimes, causing the
method to be expensive. Note that the Jacobi preconditioning could use the analytical
inversion method, i.e., an explicit form of the Navier–Stokes preconditioner can be utilized
in numerical implementation.

The increase of the (1, 1) element in the Euler part of preconditioning has the additional
benefit that it prevents the degeneration of the eigenvector system for smallM . However,
the attempt to modify the viscous Jacobian matrices in the Van Leer/Jacobi formulation was
tried in order to avoid the null space in these matrices due to the absence of diffusion in the
continuity equation, but it was not of much help because the corresponding element in the
inverse Euler preconditioning is much stronger forM → 0.

4. ANALYSIS OF VARIOUS PRECONDITIONING

Condition Number

Table I shows the condition number achieved by a variety of Navier–Stokes precondi-
tioners in the three asymptotic regimes distinguished in Eq. (14). Only their 1D versions
are considered, as a multidimensional analysis so far has not appeared possible.

For the original Navier–Stokes equations, the stiffness in the Euler limit is independent
of Reand increases as the Mach number decreases; for viscosity-dominated flow, on the
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other hand, it is independent ofM , increasing whenRedecreases. For acoustic-dominated
viscous flow the stiffness varies with bothM andRe. The use of preconditioning completely
changes this pattern. The aim is to make the condition number equal to 1 orO(1); this has
been achieved using Eqs. (13), (14) (but remember the growing mode), and there is hope
that the Jacobi-type preconditioners can be improved up to this mark.

The listings in Table I are illustrated in detail by the four carpet plots, Figs. 13–18, based
on numerically obtained eigenvalues. Figure 13 shows the condition number for the unpre-
conditioned 1D Navier–Stokes equations as a function of Mach number (10−4 ≤ M ≤ 10−1)
and cell-Reynolds number (10−5 ≤ Re≤ 105). The number is seen to increase beyond bound
for vanishingM or Re. Figure 14 shows that the Van Leer–Lee–Roe–Euler preconditioner
creates a large usable domain,Re≥ 1, larger than the Euler domain. The same is true
for Turkel’s preconditioner, see Fig. 15. This explains results recently reported by Turkel
et al. [14], viz. that the Euler preconditioner was effective in 2D and 3D viscous flow com-
putations. The cell-Reynolds number in these calculations nowhere dropped below 1, not
even in the most stretched boundary-layer cells.

Figures 16 and 18 show the improvements brought about by adding the Jacobi block
to the Euler andRe-dependent forms of the Van Leer–Lee–Roe matrix. Finally, Figure 12
shows the condition number for just theRe-dependent Van Leer matrix: it isO(1) over the
entire(M, Re) domain.

Linear Wave Propagation

Linear wave propagation analysis for an arbitrary system of viscous equations can be
performed to analyze visually the convection and damping effect. Because the exact form
of the time-dependent solution of viscous Burger’s equation with cosine initial function is
known, the transient solutions for a system may be obtained with proper linear superposition

FIG. 7. Approximation of the Dirac Delta function by superposition of cosine functions up to 40 order.
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of each frequency and sorting between each set of waves; this needs numerical calculation.
The Delta function, purely composed with cosine functions, is used as an initial function;
its wave forms will be easily obtained later at a certain time; 40 order of cosine functions
is used for realization of the Delta function (see Fig. 7).

Figures 8–10 show how each preconditioner propagates the initial delta function, approx-
imated by 40 cosines, with its own convection speed and damping rate. In all computations,
the Mach number equals 0.1. From Fig. 8, the unpreconditioned case, we see the familiar
feature of the inviscid limit that one of the waves moves slowly compared to the others,
leading to a high condition number (11 forM = 0.1). For very low cell-Reynolds numbers,

FIG. 8. Evolution of Delta functions: solution att = 1 in the unpreconditioned case, for variousRe1; M = 0.1.
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FIG. 9. Evolution of Delta functions: solution att = 1 with Van Leer/Jacobi preconditioner.

one wave is undamped and moving slowly, but not very slowly, while the other waves have
been fully damped out, leading to a huge condition number.

As can be seen from Fig. 9, the Van Leer/Jacobi Navier–Stokes preconditioner does a
good job in reducing the condition number in the Euler limit (all propagation speeds equal
in absolute value), but it suffers from a large condition number at very low cell-Reynolds
numbers, due to an undamped stationary wave (the other stationary waves show significant
damping). Figure 10 shows the improvement at very low cell-Reynolds numbers, afterRe-
dependence is put into the Euler part of the preconditioning. The undamped stationary wave
starts to move, reducing the condition number, while the growing mode is absent.
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FIG. 10. Evolution of Delta functions: solution att = 1 with Re-dependent Van Leer/Jacobi preconditioner.

5. NUMERICAL STUDIES

Below we give examples of the action of Navier–Stokes preconditioners.
First, consider initial values consisting of a uniform field with a pressure perturbation

in one central cell. The Mach number of the background flow is low (0.1, 0.01); the flow
angle is 0◦. Table II shows the number of iterations needed for 5 orders of magnitude of
residual reduction; the scheme is first-order upwind Euler with centrally differenced viscous
terms, and single-stage time-stepping. The grid consists of 10× 10 square cells. It is seen
that the convergence by the preconditioned schemes is hardly influenced by the Mach or
cell-Reynolds number, in contrast to the non-preconditioned scheme.
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TABLE II

Number of Iterations Required for Reduction of the Density Residual by a Factor 10−5 (Unless

a Smaller Exponent Is Indicated in Parentheses), in Calculating the Decay of a 10M2 % Pressure

Perturbation in the Center of a Square Domain (10× 10 Cells,AR = 1)

M

0.1 0.01

Reh Unpc VL/J C/Re Unpc VL/J C/Re

106 679 86 91 5183 86 91
104 679 86 92 5182 86 91
102 675 87 117 5100 87 116
1 1351 166 1830 5130 166 1858

10−2 50000(−4.74) 194 133 5874 195 120
10−4 50000(−2.79) 214 172 50000(−2.28) 214 121
10−6 50000(−2.21) 214 170 50000(−2.21) 214 145

Note. Discrete Navier–Stokes operator (first-order upwind/central differencing) with single-stage time march-
ing. Unpc= unpreconditioned; VL/J= Van Leer+ Jacobi; C/Re= Chorin preconditioner modified to includeRe-
dependence.

The Van Leer/Jacobi and Chorin/Re preconditioners perform comparably, with some
interesting differences. In the Euler limit the Van Leer matrix yields a lower condition
number than the Chorin matrix (1 versus 2.6), explaining the somewhat faster convergence
using the former. In the low-Relimit the situation is reversed, as the condition number for
Van Leer/Jacobi is now a factor 5 larger than for Chorin/Re. For medium Reynolds number,
Re≈ 1, the Chorin/Rematrix unexpectedlyslows downconvergence; this probably is the
result of an inadequate choice of the switching function that connects the three branches of
Eq. (14). It is clear that improvement is still possible here.

FIG. 11. Fourier footprint for unpreconditioned Navier–Stokes scheme (first-order upwind/central) with tur-
bulence modeling.M = 0.1, Reh = 106, ‖HU‖

ν
= 5× 108,AR= 10.
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FIG. 12. Same as in Fig. 11, but after Van Leer/Jacobi preconditioning.

The second example is the computation of the development of a boundary layer on
a flat plate (M∞ = 0.1, ReL = 4× 104). The cells right on the wall have an aspect ratio
≈1700. In this example, a Jacobi-type Navier–Stokes preconditioner is used. The analytical
preconditioner is not valid for this model because this model contains a medium Reynolds
number region which causes slow down convergence as can be seen from the first example.
Figure 19 shows the steady flow field. As seen from the convergence histories in Fig. 20,
convergence without preconditioning is slow to begin with and keeps slowing down, while
the preconditioned scheme has no convergence problem at all.

FIG. 13. Condition number for 1D Navier–Stokes equations without preconditioning.
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FIG. 14. Same as Fig. 13, using Van Leer’s Euler preconditioner.

FIG. 15. Same as Fig. 13, using with Turkel’s Euler preconditioner.
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FIG. 16. Same as Fig. 13, using Van Leer/Jacobi preconditioning.

FIG. 17. Same as Fig. 13, using Van Leer’s preconditioner modified to includeRe-dependence, plus the
viscous Jacobi block.
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FIG. 18. Same as Fig. 13, using Van Leer’s preconditioner modified to includeRe-dependence.

FIG. 19. Velocity field for boundary-layer development on a flat plate.M = 0.1, ReL = 4× 104, 25× 20 grid.

FIG. 20. Convergence histories for the flat-plate boundary-layer calculations.M = 0.1,ReL = 4×104, 25×20
grid. UPC= unpreconditioned, PC= Van Leer/Jacobi preconditioner.
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FIG. 21. Convergence histories for the flat-plate boundary-layer calculations with turbulence modeling.
M = 0.1, ReL = 3× 105, 25× 50 grid. UnPC= unpreconditioned; T PC= Van Leer/Jacobi preconditioner in-
cluding turbulent source-term Jacobian.

However, it has been known that even the Euler preconditioner may accelerate the vis-
cous flow computation to some extent when the lowest local Reynolds number is not too
low. Turkel’s preconditioner already succeeded in computating the viscous flow with the
Reynolds number up to around 1. But in this model, this is not the case: the cell-Reynolds
number becomes much lower than 1 at some local cells in deep boundary layers. This means
the Euler preconditioner cannot be used for acceleration of this viscous flow computation.
A numerical test also shows that the Euler preconditioner produces a critical stability prob-
lem at a very low cell-Reynolds number, failing to compute this model problem. In this
model, the large portion of convergence acceleration is believed to rely on the Euler precon-
ditioning effect rather than the treatment of preconditioner for viscous effect because the
computational domain with the Reynolds number higher than 1 is quite large. However, it
is not possible to quantitively measure the effect of each Euler and viscous preconditioning
due to the above-mentioned stability cause.

The third numerical test is the computation of the development of aturbulentbound-
ary layer on the flat plate (M∞ = 0.1, ReL = 3× 105). The Spalart–Allmaras one-equation
model is used for the turbulent transport. The convergence histories in Fig. 21 show that
the Van Leer/Jacobi preconditioner of Eq. (12) indeed achieves convergence, overcoming
the double stiffness due to the huge cell-aspect ratio (AR≈ 105) and the large source term.
Without preconditioning convergence is slow and eventually stalls.

6. CONCLUSIONS

The Navier–Stokes preconditioning is developed based on a Fourier analysis of the dis-
cretized equations and, following Venkateswaran and Merkle, a dispersion analysis of the
differential equations. The principle of the Navier–Stokes preconditioning is to remove the
dependence of the physical time scales on both the Mach number and the cell-Reynolds
number. The discrete Fourier analysis suggests a “Jacobi-type” Navier–Stokes precondi-
tioner, combining an optimal Euler preconditioner with the Jacobi block for the discretized
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viscous/conductive terms. The dispersion analysis produces an analytical form of the pre-
conditioner, which can equalize, in absolute value, the complex wave speeds of the Navier–
Stokes equations; these include both effects of viscous damping and wave propagation.

The Jacobi-type Navier–Stokes preconditioner suffers from a large condition number
due to one stationary non-damped wave at very low cell-Reynolds numbers. In contrast,
the analyticalRe-dependent Navier–Stokes preconditioner does not produce too large a
condition number over the whole Reynolds-number range, but it suffers from a less-than-
adequate switching function connecting the three asymptotic flow cases. In addition, for
very low cell-Reynolds numbers (Re¿ M2) the preconditioned equations obtain a growing
mode, which must be stabilized, e.g., by implicit time-marching. If one insists on explicitRe-
dependence, the combination with the viscous Jacobi block may overcome both obstacles of
low cell-Reynolds numbers and large cell-aspect ratios. The modification of the embedded
Euler preconditioner is restricted to puttingRe-dependence into the (1, 1) element, which is
easy to implement. This modification also helps to produce a less degenerated eigenvector
structure at low Mach numbers, comparable to limiting the Mach number from below.

It should be explained that the very lowRe-numbers where preconditioning may fail are
mostly of academic interest. Our analysis shows that down toReh ≈ 1 there is no need to
deviate from a Euler preconditioner; this observation is supported by numerical evidence
presented by other authors.

Numerical point-disturbance tests indicate that both types of preconditioners, Jacobi-
type and analytical, can increase the convergence efficiency. However, when computing
the development of a boundary-layer on a flat plate, the Jacobi-type preconditioner gives
better convergence; this may be due to the automatic inclusion of the cell-aspect-ratio in
the viscous Jacobi block.
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